
Architectural Pattern for RESTful Service
Coordination

16th Workshop "Software Engineering Education and
Reverse Engineering"

August 26th 2016

Agon Memeti, Betim Çiço

Outline
• Motivation & Problem Statement
• Contribution
• Reuse Approach (REST Architecture)
• Proposed Approach
• Coordination Model / Framework
• Framework Implementation
• Conclusions & Future Work

Motivation
 Service integration

 A long-standing research problem
 Uses software or computer system architectural principles
 Biggest challenge: linking in-house services (applications) of a single

organization in order to share data

 Authorization Problems
 Should be handled separately from the implementation

 The goal: define a suitable architecture for integrating in-house
services

Motivation

 How to integrate the existing in-house applications, reusing existing
in-house services for reduced service dependency and increased
service flexibility?

 Taking into account the flexibility, reliability and high availability of
e-services.

Problem Statement

 Different web application platforms that serve to offer services to
users but not integrated
 Difficult to evolve an existing service
 Permissions required for using the service and managed by service creator

Contribution

 Proposed a model / framework for integration of in-house
services

 decoupling authorization concerns from the implementation
 reduced service dependency
 flexible integration of registered in-house services such as University

Services.

 Validated the model by implementing the framework and applying
on a case study

Approach
1. Integrate in-house applications in order to share data

 Cloud-based, use existing SOA approaches

2. Export data as services
 The granularity of the exported data is important for reuse
 Services should match the business concepts
 RESTful services – work with resources instead of operations.

3. Propose a model
 Integrated authentication (based on OAuth 2.0 principles)
 Decoupled authorization from implementation
 Improved interoperability and flexibility

4. Validate the model
 Implement a framework
 Case study

Reuse Approach
 Reusability - is a primary attraction for developers when

discussing about reusing existing services.

 Enable providers and developers of a system to port their services,
enabling user communities to evolve.

 Three levels of reuse
- Federation
- Domain
- Application

Reuse Approach (2)
 Percentage Architectural Styles used by Software Companies

0 10 20 30 40 50 60 70

Client/Server

Component-based

Data Centric

Event/driven

REST

Service-oriented

Percentage (%)

Proposed Approach (REST & OAuth 2.0)
 RESTful Services [Roy Fielding – PhDThesis]

 Architectural style (collection of principles), lighter than SOAP-
based Web Services, due to their simplicity, heterogeneity and web-
based format.

 Simplifying usage, development, and deployment to the web.

 HTTP verbs are used for different operations:

 GET returns the list of resources.
 POST creates a new resource. Data is provided in the body.
 PUT updates an existing resource.
 PATCH updates an existing resource providing only partial data (only some fields).
 DELETE removes a resource.

OAuth 2.0
 Next evolution of the OAuth protocol which was originally

created in late 2006, enabling applications to access each other’s
data

 Permissions need to be given to services, not the final user

Proposed Model / Framework

Coordinator E-R Diagram

Application registration to the Coordinator

Application App. Key Secret Key Version End Point

A 123 ndfg74…
v1 https://registry.domain.edu/v1/student

v2 https://registry.domain.edu/v2/student

B 234 bchw88… v1 https://registry.domain.edu/v1/library

C 345 wvfwerf…

v1 https://webservice.domain.edu/v1/bursary/fees

v2 https://webservice.domain.edu/v2/bursary/fees

v3 https://webservice.domain.edu/v3/bursary/fees

https://webservice.domain.edu/v3/bursary/fees
https://webservice.domain.edu/v3/bursary/fees
https://registry.domain.edu/v1/library
https://webservice.domain.edu/v1/bursary/fees
https://webservice.domain.edu/v2/bursary/fees
https://webservice.domain.edu/v3/bursary/fees

Roles, list of roles as registered in the
Coordinator

App. Key End Point Token Expires

123
https://registry.domain.edu/v1/s

tudent
c3fb128c-2571-4133-
9b49-643eb134a188

2/15/2016 0:00

234
https://registry.domain.edu/v1/l

ibrary
dffb128c-2571-4133-9b49-

643eb134a188
1/15/2016 0:00

345
https://webservice.domain.edu/

bursary/fees
c3fb128c-2571-4133-
9b94-643eb134a188

1/15/2016 0:00

478
https://webservice.domain.edu/

registry/transcript
6eaf3468-e696-4d0a-958f-

f4a24a5efee1
1/15/2016 0:00

563
https://webservice.edu/registry/

listofstudents
bd0eb731-171a-40b5-

9833-fa5799c0c3ea
10/15/2016 0:00

https://registry.domain.edu/v1/student
https://registry.domain.edu/v1/library
https://webservice.domain.edu/bursary/fees
https://webservice.domain.edu/registry/transcript
https://webservice.edu/registry/listofstudents

Validation and Case study

 RESTful Services
o Service 0: Coordinator
o Service 1:Administrator Management System
o Service 2: Learning Management System
o Service 3: e-Library

 Implemented with open-source PHP web application
framework “Laravel” (some of them with version 4.0 and
some with version 5.0), MySQL and PostgreSQL as a
Database.

Validation and Case study (3)
 Coordinator Interface

Validation and Case study (4)

Validation and Case study (5)

Validation and Case study (6)

Validation and Case study (7)

 Administrator Management System

URI HTTP Method Collection Operation Business Operation

/faculties GET faculties retrieve Get Faculties

/faculties /create Create new Faculty
POST courses create

/faculties
/{faculties_id}/programs

GET programs retrieve Get Study Programs

/programs/{programs_id} GET courses retrieve Get Program Courses

/courses/{courses_id} GET students retrieve
Get List of Students for
specific Program

/courses/{course_id}/edit PUT courses update
Update Program
Courses

/faculties/{faculties_id}/progr
ams/{programs_id}

DELETE programs delete Delete Study Program

Validation and Case study (8)

 Learning Management System

URI
HTTP

Method
Collection Operation

Business
Operation

/student-get-courses GET Courses retrieve Get courses

/addFaculty
Create new
FacultyPOST Faculties create

/student-course GET Students retrieve
Get Students
per Courses

Validation and Case study (9)

 E-Library

URI
HTTP

Method
Collection Operation

Business
Operation

/student/{id}/books GET
Student
books

retrieve
Get Students
books

/books/store
Create new
BookPOST books create

/book/{id}/edit PUT books update Update Book

/ book/{id}/delete DELETE book delete Delete a book

Validation and Case study (10)
 Service Requests

Validation and Case study (11)

Validation and Case study (12)

Validation and Case study (13)

Validation and Case study (14)

Conclusions
• Defined a model and implemented the framework

o Facilitate development of in-house services

• Increased flexibility
o Authorization concerns separated / decoupled from service

implementation
o Developing new services doesn’t require changes to existing

service/infrastructure
o Easy to provide testing endpoints
o Allow the existence of multiple versions of the same service to exist

simultaneously
o Authorization can combine permissions from different services

Future Works

• Framework security issues in detail, which has not been handled
and discussed in our case study;
 Standard security mechanisms can be used for communication

• Integration of the entire University services;
 Additional criteria should be taken into account;

• Load testing of the coordinator in order to assess the overload
limits

• Transfer permissions across service versions
• Integrating workflow solutions with the coordinator

Publications
1. Agon Memeti and Betim Cico. Supporting content and learner collaboration and interaction through

Cloud computing models. In Proceedings of 6th IEEE International Conference on Computational
Intelligence, Communication Systems and Networks, CICSYN 2014, pp.145-148, ISBN: 978-1-4799-5075-1,
27-29 May, 2014,Tetovo, Macedonia.

2. Shkumbin Fida, Betim Cico and Agon Memeti. Resource Sharing Platform Architecture – Service Oriented
Design Lab Environment. In Proceedings of 3rd IEEE Mediterranean Conference on Embedded Computing,
MECO 2014, pp.285-288, ISBN: 978-1-4799-4827-7, 15-19 June, 2014, Budva, Montenegro.

3. Agon Memeti, Dhurate Hyseni and Betim Cico. Cloud computing in Universities with Existing
Infrastructure, Case Study: SEEU Research Lab 816. In Proceedings of 5th International Conference
“Information Systems and Technology Innovation: projecting trends in New Economy”, ISTI 2014, pp.16,
ISBN: 978-9928-02-471-7, 6-7 June, 2014,Tirana,Albania.

4. Agon Memeti and Betim Cico. Building Web Based Applications in the Cloud: A proposed Model, Case
Study: Implementation of Several e-services in SEE University in the Cloud. In Proceedings of 9th Annual
South East European Doctoral Student Conference, DSC 2014, pp.386-394, ISBN: 978-960-9416-07-8, 25-26
September, 2014,Thessaloniki, Greece.

5. Agon Memeti, Besnik Selimi and Betim Cico. Integration of Several University e-Services in the Cloud. In
Proceedings of 8th IEEE European Modelling Symposium on Mathematical Modelling and Computer
Simulation, EMS 2014, pp. 360-365, ISBN: 978-1-4799-7412-2, 21-23 October, 2014, Pisa, Italy.

Publications (2)
6. Agon Memeti, Besnik Selimi, Adrian Besimi and Betim Cico. A Framework for Flexible REST Services:

Decoupling Authorization for Reduce Service Dependency. In Proceedings of 4th IEEE Mediterranean
Conference on Embedded Computing, MECO 2015, pp.51-55, ISBN: 978-9-9409-4364-6, 14-18 June, 2015,
Budva, Montenegro.

7. Agon Memeti, Florinda Imeri and Betim Cico. REST Services Authorization Decoupling through
Reusability Approach. In Proceedings of 10th Annual South East European Doctoral Student Conference,
DSC 2015, pp.289-297, ISBN: 978-960-9416-08-5, 17-18 September, 2015,Thessaloniki, Greece.

8. Agon Memeti, Besnik Selimi, Adrian Besimi and Betim Cico. Coordinating Service Resources: An
Architecture for REST Service Collaboration. In Proceedings of 7th International Scientific Conference
Computer Science 2015. pp. 280-289, ISBN: 978-619-167-177-9, 08-10 September, 2015, Durres,Albania.

9. Agon Memeti and Betim Cico. Learning Management System using REST Services in Cloud Computing.
International Journal of Science, Innovation and Technology (IJSINT). Vol.1, No.13, pp. 47-54.Printed ISSN:
2223-2257, Online ISSN: 2225-0751.

10.Agon Memeti, Florinda Imeri and Betim Cico. REST Architecture State of Practice in Macedonian IT
Companies. Albanian Journal of Natural and Technical Sciences, AJNTS, Vol.20 No.2, pp.97-107, 2015. ISSN:
2074-0867.

Thank You for the Attention!
Questions?

	Foliennummer 1
	Outline
	Motivation
	Motivation
	Problem Statement
	Contribution
	Approach
	Reuse Approach
	Reuse Approach (2)
	Proposed Approach (REST & OAuth 2.0)
	OAuth 2.0
	Proposed Model / Framework
	Coordinator E-R Diagram
	Application registration to the Coordinator
	Roles, list of roles as registered in the Coordinator
	Validation and Case study
	Validation and Case study (3)
	Validation and Case study (4)
	Validation and Case study (5)
	Validation and Case study (6)
	Validation and Case study (7)
	Validation and Case study (8)
	Validation and Case study (9)
	Validation and Case study (10)
	Validation and Case study (11)
	Validation and Case study (12)
	Validation and Case study (13)
	Validation and Case study (14)
	Conclusions
	Future Works
	Publications
	Publications (2)
	Foliennummer 33

